Convolutional Neural
Networks

(i.e. almost magic)

We're moving into 2000s
Yann LeCun published first convolutional network in 1998 (handwriting
recognition)
Still in the drought of funding for neural network research
Everyone (including me) is doing semantic reasoning and symbolic computation
Everyone thinks neural networks are toys

(I built a toy stock trading neural network and lost $2000 in a week)

Meanwhile we have Google and (very important) Flickr

The Flickr effect

Flickr allows images to be
tagged with their content,
objects or location

So we now have a giant
dataset of public images
tagged by humans

Best training data for object
recognition

Places / Australia / Victoria /

Melbourne

MEL

Melbeurne

@ © Mapbox, © OpenStreetMap

Search for

lExceHent Photos lm

Melbourne by teekay72

Interesting Recent

From teekay72 From teekay72

From
WilliamBullimor

Fromraaen99 From Ranga1 From teekay72

Everyone's photos

What else changed?

1. Massive training data
2. Ability do matrix multiplication FAST

a. Graphics cards are designed to do this to render images
b. They were hacked to just multiply any matrices using a language called CUDA

As a result.... Robots are taking over

ILSVRC top-5 error on ImageNet

30
22.5
15

7.5

2010 201 2012 2013 2014 Human ArXiv 2015

So what created this magic? Actually pretty simple math

Feature detection

We did feature engineering before and it sucks.
Or, rather....
Feature X'= f(X) such that it...

e Amplifies what we care about

e Suppresses what we don’t care about (noise)

e Reduces size of X’ compared to X (so computations down the road are
easier)

Can we automate it?

input

Image filters/kernels

Filter = a small matrix of
weights

Slide the filter across the image
and perform a CONVOLUTION

9(z,y) = wx f(z,y) Z Z w(dz, dy) f(z + dz,y + dy),

dr=—a dy=—b

Filter matrix is such that its
value is large when desired
feature is present and small if
not

Detecting a curve going right

0j]0(0 0 |0 |30
0|0(0 50 [50 [50
0|00 [20]|50|0 |0
000 |S0|50|0 (0O
0|00 |S0]|50|0 (O
0j]O0(f(0 |50 |50|0 |0
0|00 |S0]|50|0 (O

Visualization of the
receptive field field

Pixel representation of the receptive

01010 0 30 (0
0|]0]0 30 [0 0
0|]0|0 (300 0 0
0|]0|O0(30)]0 0 0
0|]0|0 (300 0 0
0|00 (3010 0 0
0|]0]|]0|O 0 0 0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

Here a curve is going left

X
>

Visualization of the filter on the image

0 [0 [0 |O |O |O

40 (0 (0O (O |0 | O
40(0 (40(0 (O |O |O
40 | 20 0 [0 |O |O
0 |50 0o [0 |0 |O
0 [0 (500 [0 |O |O
25 (25| 0 (500 |0 |O

Pixel representation of receptive field

00|00 0 30 | 0
0(0]0 30 | 0 0
0(0)0]|30]0 0 0
0(0j0O |30 1|0 0 0
0(0)0]|30]0 0 0
0(0)0]|30)0 0 0
0(0]j0O]O 0 0 0

Pixel representation of filter

Multiplication and Summation=10

1x1 1x0 1x1 0 0
Oxo 1x1 1x0 1 0 4
Oxl Oxo 1x1 1 1
0O(0|1|1]|0
o1 I e e
— Convolved
Feature

https://ujwlkarn.files.wordpress.com/2016/0//convolution_schematic.git

Some fun filters:

-1 -1 -1
-1 8 1
=i =1 =l
g =1 0
-1 5 -1
0 -1 0
1 2 1

- 4

16

2 1

Some filters

How do we train this thing?

We can start with a set of pre-made filters... but where’s the fun in that?

Afilter is... just like the weight in a fully connected layer (convolution instead of matrix
multiplication)

d d
() 800 = (25 * 8

It can be trained using gradients!!!

(so we can start with random filters!!!)

tensorflow.keras.layers.Conv2D(filters, kernel size, strides=(1, 1),
padding='valid', data format=None, dilation rate=(1, 1),
activation=None, use bias=True, kernel initializer='glorot uniform',
bias initializer='zeros', kernel regularizer=None,
bias regularizer=None, activity regularizer=None,

kernel constraint=None, bias constraint=None)

3x3

5x5

0.91 0.32 0.07
0.73 0.26 0.81
0.53 0.68 0.14

0.27 0.64 0.44 0.84 0.29
0.28 0.06 0.89 0.99 0.33
0.64 0.67 0.08 0.38 0.03
0.04 0.31 0.16 0.57 0.08
0.87 0.85 0.97 0.71 0.96

Kernel
0 -1 0
-1 5 -1
0 -1 0

0 0
139 | 85
84 | 128
131 |:99 | 7O || 329 [127F
80 (57 |115 | 69 | 134
104 | 126 | 123 | 95 | 130
0 0 0 0 0

Stride value is speed with which the filter moves across an image (default= 1)

(how many pixels do we skip?)

Dimensionality reduction

Filtered image is smaller

n,, = floor()+ 1

Activation function

Last time we used y = tan(x) In CNN’s we use ReLU

RelLU

)

=)

x:-1.88081601 y:3.12159347 10 T
3 |
/ / Bl =riazl0;)l
2 ;‘
1
2 4 5 7
= 4 1
2
2
3

. 1
-10 -5 0 5

Original Image Feature Map Non-Linear

Pooling

Simple = 2x2 Max-Pooling

Other methods: average(mean) pooling, L2 Norm pooling

((((pooling layers are dying out and are not used on modern CNNs))))

Flattening -- fully connected layer

1] i N 0
41211 >
0|2 |1

Flattening data

Rlinmv]jolrIMvV]IB|lO|lR]|E

SoftMax

SoftMax activation function maps the outputs of a dense layer to a vector whose
elements sum up to 1

Output of SoftMax is probability of belonging to a class

e

O(xj) — Zi eXi

Loss Function -- Categorical Cross-Entropy

HY,9) =).

l

Yi

log

Vi

O<=y"r<=1

y(i)=0or 1

"L

Yi

log

Finally.... Network architecture

2D

Convolution

MaxPooling

Flatten

Feature Detection

Dense
(ReLU)

Dense
(Softmax)

Decision Making

Keras library / Tensorflow

Yay we're using libraries like civilized people

So we don’t have to write everything from scratch

Iy

Step #1: Kkemels waiting to
be applied to the image.

Image

Step #2: Each kemel is
convolved with the input

volume.

Step #3: The output of each convolution
operation produces a 2D output, called
an “activation map”.

Activi .

s 222 2 s

