
Convolutional Neural
Networks
(i.e. almost magic)

We’re moving into 2000s

Yann LeCun published first convolutional network in 1998 (handwriting
recognition)

Still in the drought of funding for neural network research

Everyone (including me) is doing semantic reasoning and symbolic computation

Everyone thinks neural networks are toys

(I built a toy stock trading neural network and lost $2000 in a week)

Meanwhile we have Google and (very important) Flickr

The Flickr effect

Flickr allows images to be
tagged with their content,
objects or location

So we now have a giant
dataset of public images
tagged by humans

Best training data for object
recognition

What else changed?

1. Massive training data
2. Ability do matrix multiplication FAST

a. Graphics cards are designed to do this to render images
b. They were hacked to just multiply any matrices using a language called CUDA

3.

As a result…. Robots are taking over

So what created this magic? Actually pretty simple math

Feature detection

We did feature engineering before and it sucks.

Or, rather....

Feature X’= f(X) such that it…

● Amplifies what we care about
● Suppresses what we don’t care about (noise)
● Reduces size of X’ compared to X (so computations down the road are

easier)

Can we automate it?

Image filters/kernels

Filter = a small matrix of
weights

Slide the filter across the image
and perform a CONVOLUTION

Filter matrix is such that its
value is large when desired
feature is present and small if
not

Detecting a curve going right

Here a curve is going left

https://ujwlkarn.files.wordpress.com/2016/07/convolution_schematic.gif

Some fun filters:

Some filters

https://ujwlkarn.files.wordpress.com/2016/08/giphy.gif

How do we train this thing?

We can start with a set of pre-made filters… but where’s the fun in that?

A filter is… just like the weight in a fully connected layer (convolution instead of matrix
multiplication)

It can be trained using gradients!!!

(so we can start with random filters!!!)

tensorflow.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1),

 padding='valid', data_format=None, dilation_rate=(1, 1),

 activation=None, use_bias=True, kernel_initializer='glorot_uniform',

 bias_initializer='zeros', kernel_regularizer=None,

 bias_regularizer=None, activity_regularizer=None,

 kernel_constraint=None, bias_constraint=None)

Striiiiiide

Stride value is speed with which the filter moves across an image (default= 1)

(how many pixels do we skip?)

Dimensionality reduction
Filtered image is smaller

Activation function

Last time we used y = tan(x) In CNN’s we use ReLU

Pooling

Simple = 2x2 Max-Pooling

Other methods: average(mean) pooling, L2 Norm pooling

((((pooling layers are dying out and are not used on modern CNNs))))

Flattening -- fully connected layer

SoftMax

SoftMax activation function maps the outputs of a dense layer to a vector whose
elements sum up to 1

Output of SoftMax is probability of belonging to a class

Loss Function -- Categorical Cross-Entropy

0<=y^<=1

y(i) = 0 or 1

Finally…. Network architecture

2D

Convolution
MaxPooling Flatten

Dense
(ReLU)

Dense
(Softmax)

Feature Detection

Decision Making

Keras library / Tensorflow

Yay we’re using libraries like civilized people

So we don’t have to write everything from scratch

Activation Function choice

